home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Precos 4.97 Computer 2000
/
Precos 4.97 Computer 2000.iso
/
mac
/
Info
/
5Networking
/
3COM
/
3C779.EXE
/
IVLBFDDI.MIB
< prev
next >
Wrap
Text File
|
1994-03-30
|
147KB
|
4,670 lines
LBFDDI-MIB DEFINITIONS ::= BEGIN
IMPORTS
mgmt, NetworkAddress, IpAddress, Counter, Gauge,
TimeTicks
FROM RFC1155-SMI
OBJECT-TYPE
FROM RFC-1212;
-- This MIB module uses the extended OBJECT-TYPE macro as
-- defined in [14];
-- MIB-II (same prefix as MIB-I)
mgmt OBJECT IDENTIFIER ::= { 1 3 6 1 2 }
mib-2 OBJECT IDENTIFIER ::= { mgmt 1 }
enterprises OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 }
a3com OBJECT IDENTIFIER ::= { enterprises 43 }
-- textual conventions
-- DisplayString ::= OCTET STRING
-- This data type is used to model textual information taken
-- from the NVT ASCII character set. By convention, objects
-- with this syntax are declared as having
--
-- SIZE (0..255)
PhysAddress ::= OCTET STRING
-- This data type is used to model media addresses. For many
-- types of media, this will be in a binary representation.
-- For example, an ethernet address would be represented as
-- a string of 6 octets.
FddiTimeNano ::= INTEGER (0..2147483647)
-- This data type specifies 1 nanosecond units as
-- an integer value.
--
-- NOTE: The encoding is normal integer representation, not
-- two's complement. Since this type is used for variables
-- which are encoded as TimerTwosComplement in the ANSI
-- specification, two operations need to be performed on such
-- variables to convert from ANSI form to SNMP form:
--
-- 1) Convert from two's complement to normal integer
-- representation
-- 2) Multiply by 80 to convert from 80 nsec to 1 nsec units
--
-- No resolution is lost. Moreover, the objects for which
-- this data type is used effectively do not lose any range
-- due to the lower maximum value since they do not require
-- the full range.
--
-- Example: If fddimibMACTReq had a value of 8 ms, it would
-- be stored in ANSI TimerTwosComplement format as 0xFFFE7960
-- [8 ms is 100000 in 80 nsec units, which is then converted
-- to two's complement] but be reported as 8000000 in SNMP
-- since it is encoded here as FddiTimeNano.
FddiTimeMilli ::= INTEGER (0..2147483647)
-- This data type is used for some FDDI timers. It specifies
-- time in 1 millisecond units, in normal integer
-- representation.
FddiResourceId ::= INTEGER (0..65535)
-- This data type is used to refer to an instance of a MAC,
-- PORT, or PATH Resource ID. Indexing begins
-- at 1. Zero is used to indicate the absence of a resource.
FddiSMTStationIdType ::= OCTET STRING (SIZE (8))
-- The unique identifier for the FDDI station. This is a
-- string of 8 octets, represented as X' yy yy xx xx xx xx
-- xx xx' with the low order 6 octet (xx) from a unique IEEE
-- assigned address. The high order two bits of the IEEE
-- address, the group address bit and the administration bit
-- (Universal/Local) bit should both be zero. The first two
-- octets, the yy octets, are implementor-defined.
--
-- The representation of the address portion of the station id
-- is in the IEEE (ANSI/IEEE P802.1A) canonical notation for
-- 48 bit addresses. The canonical form is a 6-octet string
-- where the first octet contains the first 8 bits of the
-- address, with the I/G(Individual/Group) address bit as the
-- least significant bit and the U/L (Universal/Local) bit
-- as the next more significant bit, and so on. Note that
-- addresses in the ANSI FDDI standard SMT frames are
-- represented in FDDI MAC order.
FddiMACLongAddressType ::= OCTET STRING (SIZE (6))
-- The representation of long MAC addresses as management
-- values is in the IEEE (ANSI/IEEE P802.1A) canonical
-- notation for 48 bit addresses. The canonical form is a
-- 6-octet string where the first octet contains the first 8
-- bits of the address, with the I/G (Individual/Group)
-- address bit as the least significant bit and the U/L
-- (Universal/Local) bit as the next more significant bit,
-- and so on. Note that the addresses in the SMT frames are
-- represented in FDDI MAC order.
-- groups in MIB-II
system OBJECT IDENTIFIER ::= { mib-2 1 }
interfaces OBJECT IDENTIFIER ::= { mib-2 2 }
at OBJECT IDENTIFIER ::= { mib-2 3 }
ip OBJECT IDENTIFIER ::= { mib-2 4 }
icmp OBJECT IDENTIFIER ::= { mib-2 5 }
tcp OBJECT IDENTIFIER ::= { mib-2 6 }
udp OBJECT IDENTIFIER ::= { mib-2 7 }
egp OBJECT IDENTIFIER ::= { mib-2 8 }
-- historical (some say hysterical)
-- cmot OBJECT IDENTIFIER ::= { mib-2 9 }
transmission OBJECT IDENTIFIER ::= { mib-2 10 }
snmp OBJECT IDENTIFIER ::= { mib-2 11 }
-- groups in the FDDI MIB module
-- this is the FDDI MIB module
fddi OBJECT IDENTIFIER ::= { transmission 15 }
fddimib OBJECT IDENTIFIER ::= { fddi 73 }
fddimibSMT OBJECT IDENTIFIER ::= { fddimib 1 }
fddimibMAC OBJECT IDENTIFIER ::= { fddimib 2 }
fddimibMACCounters OBJECT IDENTIFIER ::= { fddimib 3 }
fddimibPATH OBJECT IDENTIFIER ::= { fddimib 4 }
fddimibPORT OBJECT IDENTIFIER ::= { fddimib 5 }
-- the System group
-- Implementation of the System group is mandatory for all
-- systems. If an agent is not configured to have a value
-- for any of these variables, a string of length 0 is
-- returned.
isoview-mib-def MIB-DEVICE-TYPE -- generated definitions
DEVICE-TYPE-NAME "LinkBuilder FDDI Hub"
INVENTORY-POSITION "Hub"
MAX-SNMP-PDU 1500
sysDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A textual description of the entity. This value
should include the full name and version
identification of the system's hardware type,
software operating-system, and networking
software. It is mandatory that this only contain
printable ASCII characters."
::= { system 1 }
sysObjectID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The vendor's authoritative identification of the
network management subsystem contained in the
entity. This value is allocated within the SMI
enterprises subtree (1.3.6.1.4.1) and provides an
easy and unambiguous means for determining `what
kind of box' is being managed. For example, if
vendor `Flintstones, Inc.' was assigned the
subtree 1.3.6.1.4.1.4242, it could assign the
identifier 1.3.6.1.4.1.4242.1.1 to its `Fred
Router'."
::= { system 2 }
sysUpTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The time (in hundredths of a second) since the
network management portion of the system was last
re-initialized."
::= { system 3 }
sysContact OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The textual identification of the contact person
for this managed node, together with information
on how to contact this person."
::= { system 4 }
sysName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"An administratively-assigned name for this
managed node. By convention, this is the node's
fully-qualified domain name."
::= { system 5 }
sysLocation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The physical location of this node (e.g.,
`telephone closet, 3rd floor')."
::= { system 6 }
sysServices OBJECT-TYPE
SYNTAX INTEGER (0..127)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A value which indicates the set of services that
this entity primarily offers.
The value is a sum. This sum initially takes the
value zero, Then, for each layer, L, in the range
1 through 7, that this node performs transactions
for, 2 raised to (L - 1) is added to the sum. For
example, a node which performs primarily routing
functions would have a value of 4 (2^(3-1)). In
contrast, a node which is a host offering
application services would have a value of 72
(2^(4-1) + 2^(7-1)). Note that in the context of
the Internet suite of protocols, values should be
calculated accordingly:
layer functionality
1 physical (e.g., repeaters)
2 datalink/subnetwork (e.g., bridges)
3 internet (e.g., IP gateways)
4 end-to-end (e.g., IP hosts)
7 applications (e.g., mail relays)
For systems including OSI protocols, layers 5 and
6 may also be counted."
::= { system 7 }
-- the Interfaces group
-- Implementation of the Interfaces group is mandatory for
-- all systems.
ifNumber OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of network interfaces (regardless of
their current state) present on this system."
::= { interfaces 1 }
-- the Interfaces table
-- The Interfaces table contains information on the entity's
-- interfaces. Each interface is thought of as being
-- attached to a `subnetwork'. Note that this term should
-- not be confused with `subnet' which refers to an
-- addressing partitioning scheme used in the Internet suite
-- of protocols.
ifTable OBJECT-TYPE
SYNTAX SEQUENCE OF IfEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of interface entries. The number of
entries is given by the value of ifNumber."
::= { interfaces 2 }
ifEntry OBJECT-TYPE
SYNTAX IfEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An interface entry containing objects at the
subnetwork layer and below for a particular
interface."
INDEX { ifIndex }
::= { ifTable 1 }
IfEntry ::=
SEQUENCE {
ifIndex
INTEGER,
ifDescr
DisplayString,
ifType
INTEGER,
ifMtu
INTEGER,
ifSpeed
Gauge,
ifPhysAddress
PhysAddress,
ifAdminStatus
INTEGER,
ifOperStatus
INTEGER,
ifLastChange
TimeTicks,
ifInOctets
Counter,
ifInUcastPkts
Counter,
ifInNUcastPkts
Counter,
ifInDiscards
Counter,
ifInErrors
Counter,
ifInUnknownProtos
Counter,
ifOutOctets
Counter,
ifOutUcastPkts
Counter,
ifOutNUcastPkts
Counter,
ifOutDiscards
Counter,
ifOutErrors
Counter,
ifOutQLen
Gauge,
ifSpecific
OBJECT IDENTIFIER
}
ifIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A unique value for each interface. Its value
ranges between 1 and the value of ifNumber. The
value for each interface must remain constant at
least from one re-initialization of the entity's
network management system to the next re-
initialization."
::= { ifEntry 1 }
ifDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A textual string containing information about the
interface. This string should include the name of
the manufacturer, the product name and the version
of the hardware interface."
::= { ifEntry 2 }
ifType OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
regular1822(2),
hdh1822(3),
ddn-x25(4),
rfc877-x25(5),
ethernet-csmacd(6),
iso88023-csmacd(7),
iso88024-tokenBus(8),
iso88025-tokenRing(9),
iso88026-man(10),
starLan(11),
proteon-10Mbit(12),
proteon-80Mbit(13),
hyperchannel(14),
fddi(15),
lapb(16),
sdlc(17),
ds1(18), -- T-1
e1(19), -- european equiv. of T-1
basicISDN(20),
primaryISDN(21), -- proprietary serial
propPointToPointSerial(22),
ppp(23),
softwareLoopback(24),
eon(25), -- CLNP over IP [11]
ethernet-3Mbit(26),
nsip(27), -- XNS over IP
slip(28), -- generic SLIP
ultra(29), -- ULTRA technologies
ds3(30), -- T-3
sip(31), -- SMDS
frame-relay(32)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The type of interface, distinguished according to
the physical/link protocol(s) immediately `below'
the network layer in the protocol stack."
::= { ifEntry 3 }
ifMtu OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The size of the largest datagram which can be
sent/received on the interface, specified in
octets. For interfaces that are used for
transmitting network datagrams, this is the size
of the largest network datagram that can be sent
on the interface."
::= { ifEntry 4 }
ifSpeed OBJECT-TYPE
SYNTAX Gauge
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An estimate of the interface's current bandwidth
in bits per second. For interfaces which do not
vary in bandwidth or for those where no accurate
estimation can be made, this object should contain
the nominal bandwidth."
::= { ifEntry 5 }
ifPhysAddress OBJECT-TYPE
SYNTAX PhysAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The interface's address at the protocol layer
immediately `below' the network layer in the
protocol stack. For interfaces which do not have
such an address (e.g., a serial line), this object
should contain an octet string of zero length."
::= { ifEntry 6 }
ifAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
up(1), -- ready to pass packets
down(2),
testing(3) -- in some test mode
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The desired state of the interface. The
testing(3) state indicates that no operational
packets can be passed."
::= { ifEntry 7 }
ifOperStatus OBJECT-TYPE
SYNTAX INTEGER {
up(1), -- ready to pass packets
down(2),
testing(3) -- in some test mode
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The current operational state of the interface.
The testing(3) state indicates that no operational
packets can be passed."
::= { ifEntry 8 }
ifLastChange OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the time the interface
entered its current operational state. If the
current state was entered prior to the last re-
initialization of the local network management
subsystem, then this object contains a zero
value."
::= { ifEntry 9 }
ifInOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets received on the
interface, including framing characters."
::= { ifEntry 10 }
ifInUcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of subnetwork-unicast packets
delivered to a higher-layer protocol."
::= { ifEntry 11 }
ifInNUcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of non-unicast (i.e., subnetwork-
broadcast or subnetwork-multicast) packets
delivered to a higher-layer protocol."
::= { ifEntry 12 }
ifInDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of inbound packets which were chosen
to be discarded even though no errors had been
detected to prevent their being deliverable to a
higher-layer protocol. One possible reason for
discarding such a packet could be to free up
buffer space."
::= { ifEntry 13 }
ifInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of inbound packets that contained
errors preventing them from being deliverable to a
higher-layer protocol."
::= { ifEntry 14 }
ifInUnknownProtos OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of packets received via the interface
which were discarded because of an unknown or
unsupported protocol."
::= { ifEntry 15 }
ifOutOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets transmitted out of the
interface, including framing characters."
::= { ifEntry 16 }
ifOutUcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets that higher-level
protocols requested be transmitted to a
subnetwork-unicast address, including those that
were discarded or not sent."
::= { ifEntry 17 }
ifOutNUcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of packets that higher-level
protocols requested be transmitted to a non-
unicast (i.e., a subnetwork-broadcast or
subnetwork-multicast) address, including those
that were discarded or not sent."
::= { ifEntry 18 }
ifOutDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of outbound packets which were chosen
to be discarded even though no errors had been
detected to prevent their being transmitted. One
possible reason for discarding such a packet could
be to free up buffer space."
::= { ifEntry 19 }
ifOutErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of outbound packets that could not be
transmitted because of errors."
::= { ifEntry 20 }
ifOutQLen OBJECT-TYPE
SYNTAX Gauge
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The length of the output packet queue (in
packets)."
::= { ifEntry 21 }
ifSpecific OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A reference to MIB definitions specific to the
particular media being used to realize the
interface. For example, if the interface is
realized by an ethernet, then the value of this
object refers to a document defining objects
specific to ethernet. If this information is not
present, its value should be set to the OBJECT
IDENTIFIER { 0 0 }, which is a syntatically valid
object identifier, and any conformant
implementation of ASN.1 and BER must be able to
generate and recognize this value."
::= { ifEntry 22 }
-- the Address Translation group
-- Implementation of the Address Translation group is
-- mandatory for all systems. Note however that this group
-- is deprecated by MIB-II. That is, it is being included
-- solely for compatibility with MIB-I nodes, and will most
-- likely be excluded from MIB-III nodes. From MIB-II and
-- onwards, each network protocol group contains its own
-- address translation tables.
-- The Address Translation group contains one table which is
-- the union across all interfaces of the translation tables
-- for converting a NetworkAddress (e.g., an IP address) into
-- a subnetwork-specific address. For lack of a better term,
-- this document refers to such a subnetwork-specific address
-- as a `physical' address.
-- Examples of such translation tables are: for broadcast
-- media where ARP is in use, the translation table is
-- equivalent to the ARP cache; or, on an X.25 network where
-- non-algorithmic translation to X.121 addresses is
-- required, the translation table contains the
-- NetworkAddress to X.121 address equivalences.
atTable OBJECT-TYPE
SYNTAX SEQUENCE OF AtEntry
ACCESS not-accessible
STATUS deprecated
DESCRIPTION
"The Address Translation tables contain the
NetworkAddress to `physical' address equivalences.
Some interfaces do not use translation tables for
determining address equivalences (e.g., DDN-X.25
has an algorithmic method); if all interfaces are
of this type, then the Address Translation table
is empty, i.e., has zero entries."
::= { at 1 }
atEntry OBJECT-TYPE
SYNTAX AtEntry
ACCESS not-accessible
STATUS deprecated
DESCRIPTION
"Each entry contains one NetworkAddress to
`physical' address equivalence."
INDEX { atIfIndex,
atNetAddress }
::= { atTable 1 }
AtEntry ::=
SEQUENCE {
atIfIndex
INTEGER,
atPhysAddress
PhysAddress,
atNetAddress
NetworkAddress
}
atIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS deprecated
DESCRIPTION
"The interface on which this entry's equivalence
is effective. The interface identified by a
particular value of this index is the same
interface as identified by the same value of
ifIndex."
::= { atEntry 1 }
atPhysAddress OBJECT-TYPE
SYNTAX PhysAddress
ACCESS read-only
STATUS deprecated
DESCRIPTION
"The media-dependent `physical' address.
Setting this object to a null string (one of zero
length) has the effect of invaliding the
corresponding entry in the atTable object. That
is, it effectively dissasociates the interface
identified with said entry from the mapping
identified with said entry. It is an
implementation-specific matter as to whether the
agent removes an invalidated entry from the table.
Accordingly, management stations must be prepared
to receive tabular information from agents that
corresponds to entries not currently in use.
Proper interpretation of such entries requires
examination of the relevant atPhysAddress object."
::= { atEntry 2 }
atNetAddress OBJECT-TYPE
SYNTAX NetworkAddress
ACCESS read-only
STATUS deprecated
DESCRIPTION
"The NetworkAddress (e.g., the IP address)
corresponding to the media-dependent `physical'
address."
::= { atEntry 3 }
-- the IP group
-- Implementation of the IP group is mandatory for all
-- systems.
ipForwarding OBJECT-TYPE
SYNTAX INTEGER {
forwarding(1), -- acting as a gateway
not-forwarding(2) -- NOT acting as a gateway
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The indication of whether this entity is acting
as an IP gateway in respect to the forwarding of
datagrams received by, but not addressed to, this
entity. IP gateways forward datagrams. IP hosts
do not (except those source-routed via the host).
Note that for some managed nodes, this object may
take on only a subset of the values possible.
Accordingly, it is appropriate for an agent to
return a `badValue' response if a management
station attempts to change this object to an
inappropriate value."
::= { ip 1 }
ipDefaultTTL OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The default value inserted into the Time-To-Live
field of the IP header of datagrams originated at
this entity, whenever a TTL value is not supplied
by the transport layer protocol."
::= { ip 2 }
ipInReceives OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input datagrams received from
interfaces, including those received in error."
::= { ip 3 }
ipInHdrErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of input datagrams discarded due to
errors in their IP headers, including bad
checksums, version number mismatch, other format
errors, time-to-live exceeded, errors discovered
in processing their IP options, etc."
::= { ip 4 }
ipInAddrErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of input datagrams discarded because
the IP address in their IP header's destination
field was not a valid address to be received at
this entity. This count includes invalid
addresses (e.g., 0.0.0.0) and addresses of
unsupported Classes (e.g., Class E). For entities
which are not IP Gateways and therefore do not
forward datagrams, this counter includes datagrams
discarded because the destination address was not
a local address."
::= { ip 5 }
ipForwDatagrams OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of input datagrams for which this
entity was not their final IP destination, as a
result of which an attempt was made to find a
route to forward them to that final destination.
In entities which do not act as IP Gateways, this
counter will include only those packets which were
Source-Routed via this entity, and the Source-
Route option processing was successful."
::= { ip 6 }
ipInUnknownProtos OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of locally-addressed datagrams
received successfully but discarded because of an
unknown or unsupported protocol."
::= { ip 7 }
ipInDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of input IP datagrams for which no
problems were encountered to prevent their
continued processing, but which were discarded
(e.g., for lack of buffer space). Note that this
counter does not include any datagrams discarded
while awaiting re-assembly."
::= { ip 8 }
ipInDelivers OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input datagrams successfully
delivered to IP user-protocols (including ICMP)."
::= { ip 9 }
ipOutRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of IP datagrams which local IP
user-protocols (including ICMP) supplied to IP in
requests for transmission. Note that this counter
does not include any datagrams counted in
ipForwDatagrams."
::= { ip 10 }
ipOutDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of output IP datagrams for which no
problem was encountered to prevent their
transmission to their destination, but which were
discarded (e.g., for lack of buffer space). Note
that this counter would include datagrams counted
in ipForwDatagrams if any such packets met this
(discretionary) discard criterion."
::= { ip 11 }
ipOutNoRoutes OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of IP datagrams discarded because no
route could be found to transmit them to their
destination. Note that this counter includes any
packets counted in ipForwDatagrams which meet this
`no-route' criterion. Note that this includes any
datagarms which a host cannot route because all of
its default gateways are down."
::= { ip 12 }
ipReasmTimeout OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The maximum number of seconds which received
fragments are held while they are awaiting
reassembly at this entity."
::= { ip 13 }
ipReasmReqds OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of IP fragments received which needed
to be reassembled at this entity."
::= { ip 14 }
ipReasmOKs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of IP datagrams successfully re-
assembled."
::= { ip 15 }
ipReasmFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of failures detected by the IP re-
assembly algorithm (for whatever reason: timed
out, errors, etc). Note that this is not
necessarily a count of discarded IP fragments
since some algorithms (notably the algorithm in
RFC 815) can lose track of the number of fragments
by combining them as they are received."
::= { ip 16 }
ipFragOKs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of IP datagrams that have been
successfully fragmented at this entity."
::= { ip 17 }
ipFragFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of IP datagrams that have been
discarded because they needed to be fragmented at
this entity but could not be, e.g., because their
Don't Fragment flag was set."
::= { ip 18 }
ipFragCreates OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of IP datagram fragments that have
been generated as a result of fragmentation at
this entity."
::= { ip 19 }
-- the IP address table
-- The IP address table contains this entity's IP addressing
-- information.
ipAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpAddrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The table of addressing information relevant to
this entity's IP addresses."
::= { ip 20 }
ipAddrEntry OBJECT-TYPE
SYNTAX IpAddrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The addressing information for one of this
entity's IP addresses."
INDEX { ipAdEntAddr }
::= { ipAddrTable 1 }
IpAddrEntry ::=
SEQUENCE {
ipAdEntAddr
IpAddress,
ipAdEntIfIndex
INTEGER,
ipAdEntNetMask
IpAddress,
ipAdEntBcastAddr
INTEGER,
ipAdEntReasmMaxSize
INTEGER (0..65535)
}
ipAdEntAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The IP address to which this entry's addressing
information pertains."
::= { ipAddrEntry 1 }
ipAdEntIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The index value which uniquely identifies the
interface to which this entry is applicable. The
interface identified by a particular value of this
index is the same interface as identified by the
same value of ifIndex."
::= { ipAddrEntry 2 }
ipAdEntNetMask OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The subnet mask associated with the IP address of
this entry. The value of the mask is an IP
address with all the network bits set to 1 and all
the hosts bits set to 0."
::= { ipAddrEntry 3 }
ipAdEntBcastAddr OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the least-significant bit in the IP
broadcast address used for sending datagrams on
the (logical) interface associated with the IP
address of this entry. For example, when the
Internet standard all-ones broadcast address is
used, the value will be 1. This value applies to
both the subnet and network broadcasts addresses
used by the entity on this (logical) interface."
::= { ipAddrEntry 4 }
ipAdEntReasmMaxSize OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The size of the largest IP datagram which this
entity can re-assemble from incoming IP fragmented
datagrams received on this interface."
::= { ipAddrEntry 5 }
-- the IP routing table
-- The IP routing table contains an entry for each route
-- presently known to this entity.
ipRouteTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpRouteEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"This entity's IP Routing table."
::= { ip 21 }
ipRouteEntry OBJECT-TYPE
SYNTAX IpRouteEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A route to a particular destination."
INDEX { ipRouteDest }
::= { ipRouteTable 1 }
IpRouteEntry ::=
SEQUENCE {
ipRouteDest
IpAddress,
ipRouteIfIndex
INTEGER,
ipRouteMetric1
INTEGER,
ipRouteMetric2
INTEGER,
ipRouteMetric3
INTEGER,
ipRouteMetric4
INTEGER,
ipRouteNextHop
IpAddress,
ipRouteType
INTEGER,
ipRouteProto
INTEGER,
ipRouteAge
INTEGER,
ipRouteMask
IpAddress,
ipRouteMetric5
INTEGER,
ipRouteInfo
OBJECT IDENTIFIER
}
ipRouteDest OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The destination IP address of this route. An
entry with a value of 0.0.0.0 is considered a
default route. Multiple routes to a single
destination can appear in the table, but access to
such multiple entries is dependent on the table-
access mechanisms defined by the network
management protocol in use."
::= { ipRouteEntry 1 }
ipRouteIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The index value which uniquely identifies the
local interface through which the next hop of this
route should be reached. The interface identified
by a particular value of this index is the same
interface as identified by the same value of
ifIndex."
::= { ipRouteEntry 2 }
ipRouteMetric1 OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The primary routing metric for this route. The
semantics of this metric are determined by the
routing-protocol specified in the route's
ipRouteProto value. If this metric is not used,
its value should be set to -1."
::= { ipRouteEntry 3 }
ipRouteMetric2 OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An alternate routing metric for this route. The
semantics of this metric are determined by the
routing-protocol specified in the route's
ipRouteProto value. If this metric is not used,
its value should be set to -1."
::= { ipRouteEntry 4 }
ipRouteMetric3 OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An alternate routing metric for this route. The
semantics of this metric are determined by the
routing-protocol specified in the route's
ipRouteProto value. If this metric is not used,
its value should be set to -1."
::= { ipRouteEntry 5 }
ipRouteMetric4 OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An alternate routing metric for this route. The
semantics of this metric are determined by the
routing-protocol specified in the route's
ipRouteProto value. If this metric is not used,
its value should be set to -1."
::= { ipRouteEntry 6 }
ipRouteNextHop OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The IP address of the next hop of this route.
(In the case of a route bound to an interface
which is realized via a broadcast media, the value
of this field is the agent's IP address on that
interface.)"
::= { ipRouteEntry 7 }
ipRouteType OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
invalid(2), -- an invalidated route
-- route to directly
direct(3), -- connected (sub-)network
-- route to a non-local
indirect(4) -- host/network/sub-network
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The type of route. Note that the values
direct(3) and indirect(4) refer to the notion of
direct and indirect routing in the IP
architecture.
Setting this object to the value invalid(2) has
the effect of invalidating the corresponding entry
in the ipRouteTable object. That is, it
effectively dissasociates the destination
identified with said entry from the route
identified with said entry. It is an
implementation-specific matter as to whether the
agent removes an invalidated entry from the table.
Accordingly, management stations must be prepared
to receive tabular information from agents that
corresponds to entries not currently in use.
Proper interpretation of such entries requires
examination of the relevant ipRouteType object."
::= { ipRouteEntry 8 }
ipRouteProto OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
-- non-protocol information,
-- e.g., manually configured
local(2), -- entries
-- set via a network
netmgmt(3), -- management protocol
-- obtained via ICMP,
icmp(4), -- e.g., Redirect
-- the remaining values are
-- all gateway routing
-- protocols
egp(5),
ggp(6),
hello(7),
rip(8),
is-is(9),
es-is(10),
ciscoIgrp(11),
bbnSpfIgp(12),
ospf(13),
bgp(14)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The routing mechanism via which this route was
learned. Inclusion of values for gateway routing
protocols is not intended to imply that hosts
should support those protocols."
::= { ipRouteEntry 9 }
ipRouteAge OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of seconds since this route was last
updated or otherwise determined to be correct.
Note that no semantics of `too old' can be implied
except through knowledge of the routing protocol
by which the route was learned."
::= { ipRouteEntry 10 }
ipRouteMask OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicate the mask to be logical-ANDed with the
destination address before being compared to the
value in the ipRouteDest field. For those systems
that do not support arbitrary subnet masks, an
agent constructs the value of the ipRouteMask by
determining whether the value of the correspondent
ipRouteDest field belong to a class-A, B, or C
network, and then using one of:
mask network
255.0.0.0 class-A
255.255.0.0 class-B
255.255.255.0 class-C
If the value of the ipRouteDest is 0.0.0.0 (a
default route), then the mask value is also
0.0.0.0. It should be noted that all IP routing
subsystems implicitly use this mechanism."
::= { ipRouteEntry 11 }
ipRouteMetric5 OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An alternate routing metric for this route. The
semantics of this metric are determined by the
routing-protocol specified in the route's
ipRouteProto value. If this metric is not used,
its value should be set to -1."
::= { ipRouteEntry 12 }
ipRouteInfo OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A reference to MIB definitions specific to the
particular routing protocol which is responsible
for this route, as determined by the value
specified in the route's ipRouteProto value. If
this information is not present, its value should
be set to the OBJECT IDENTIFIER { 0 0 }, which is
a syntatically valid object identifier, and any
conformant implementation of ASN.1 and BER must be
able to generate and recognize this value."
::= { ipRouteEntry 13 }
-- the IP Address Translation table
-- The IP address translation table contain the IpAddress to
-- `physical' address equivalences. Some interfaces do not
-- use translation tables for determining address
-- equivalences (e.g., DDN-X.25 has an algorithmic method);
-- if all interfaces are of this type, then the Address
-- Translation table is empty, i.e., has zero entries.
ipNetToMediaTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpNetToMediaEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The IP Address Translation table used for mapping
from IP addresses to physical addresses."
::= { ip 22 }
ipNetToMediaEntry OBJECT-TYPE
SYNTAX IpNetToMediaEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Each entry contains one IpAddress to `physical'
address equivalence."
INDEX { ipNetToMediaIfIndex,
ipNetToMediaNetAddress }
::= { ipNetToMediaTable 1 }
IpNetToMediaEntry ::=
SEQUENCE {
ipNetToMediaIfIndex
INTEGER,
ipNetToMediaPhysAddress
PhysAddress,
ipNetToMediaNetAddress
IpAddress,
ipNetToMediaType
INTEGER
}
ipNetToMediaIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The interface on which this entry's equivalence
is effective. The interface identified by a
particular value of this index is the same
interface as identified by the same value of
ifIndex."
::= { ipNetToMediaEntry 1 }
ipNetToMediaPhysAddress OBJECT-TYPE
SYNTAX PhysAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The media-dependent `physical' address."
::= { ipNetToMediaEntry 2 }
ipNetToMediaNetAddress OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The IpAddress corresponding to the media-
dependent `physical' address."
::= { ipNetToMediaEntry 3 }
ipNetToMediaType OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
invalid(2), -- an invalidated mapping
dynamic(3),
static(4)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The type of mapping.
Setting this object to the value invalid(2) has
the effect of invalidating the corresponding entry
in the ipNetToMediaTable. That is, it effectively
dissasociates the interface identified with said
entry from the mapping identified with said entry.
It is an implementation-specific matter as to
whether the agent removes an invalidated entry
from the table. Accordingly, management stations
must be prepared to receive tabular information
from agents that corresponds to entries not
currently in use. Proper interpretation of such
entries requires examination of the relevant
ipNetToMediaType object."
::= { ipNetToMediaEntry 4 }
-- additional IP objects
ipRoutingDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of routing entries which were chosen
to be discarded even though they are valid. One
possible reason for discarding such an entry could
be to free-up buffer space for other routing
entries."
::= { ip 23 }
-- the ICMP group
-- Implementation of the ICMP group is mandatory for all
-- systems.
icmpInMsgs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of ICMP messages which the
entity received. Note that this counter includes
all those counted by icmpInErrors."
::= { icmp 1 }
icmpInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP messages which the entity
received but determined as having ICMP-specific
errors (bad ICMP checksums, bad length, etc.)."
::= { icmp 2 }
icmpInDestUnreachs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Destination Unreachable
messages received."
::= { icmp 3 }
icmpInTimeExcds OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Time Exceeded messages
received."
::= { icmp 4 }
icmpInParmProbs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Parameter Problem messages
received."
::= { icmp 5 }
icmpInSrcQuenchs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Source Quench messages
received."
::= { icmp 6 }
icmpInRedirects OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Redirect messages received."
::= { icmp 7 }
icmpInEchos OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Echo (request) messages
received."
::= { icmp 8 }
icmpInEchoReps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Echo Reply messages received."
::= { icmp 9 }
icmpInTimestamps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Timestamp (request) messages
received."
::= { icmp 10 }
icmpInTimestampReps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Timestamp Reply messages
received."
::= { icmp 11 }
icmpInAddrMasks OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Address Mask Request messages
received."
::= { icmp 12 }
icmpInAddrMaskReps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Address Mask Reply messages
received."
::= { icmp 13 }
icmpOutMsgs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of ICMP messages which this
entity attempted to send. Note that this counter
includes all those counted by icmpOutErrors."
::= { icmp 14 }
icmpOutErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP messages which this entity did
not send due to problems discovered within ICMP
such as a lack of buffers. This value should not
include errors discovered outside the ICMP layer
such as the inability of IP to route the resultant
datagram. In some implementations there may be no
types of error which contribute to this counter's
value."
::= { icmp 15 }
icmpOutDestUnreachs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Destination Unreachable
messages sent."
::= { icmp 16 }
icmpOutTimeExcds OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Time Exceeded messages sent."
::= { icmp 17 }
icmpOutParmProbs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Parameter Problem messages
sent."
::= { icmp 18 }
icmpOutSrcQuenchs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Source Quench messages sent."
::= { icmp 19 }
icmpOutRedirects OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Redirect messages sent. For a
host, this object will always be zero, since hosts
do not send redirects."
::= { icmp 20 }
icmpOutEchos OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Echo (request) messages sent."
::= { icmp 21 }
icmpOutEchoReps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Echo Reply messages sent."
::= { icmp 22 }
icmpOutTimestamps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Timestamp (request) messages
sent."
::= { icmp 23 }
icmpOutTimestampReps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Timestamp Reply messages
sent."
::= { icmp 24 }
icmpOutAddrMasks OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Address Mask Request messages
sent."
::= { icmp 25 }
icmpOutAddrMaskReps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ICMP Address Mask Reply messages
sent."
::= { icmp 26 }
-- the TCP group
-- Implementation of the TCP group is mandatory for all
-- systems that implement the TCP.
-- Note that instances of object types that represent
-- information about a particular TCP connection are
-- transient; they persist only as long as the connection
-- in question.
tcpRtoAlgorithm OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
constant(2), -- a constant rto
rsre(3), -- MIL-STD-1778, Appendix B
vanj(4) -- Van Jacobson's algorithm [10]
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The algorithm used to determine the timeout value
used for retransmitting unacknowledged octets."
::= { tcp 1 }
tcpRtoMin OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The minimum value permitted by a TCP
implementation for the retransmission timeout,
measured in milliseconds. More refined semantics
for objects of this type depend upon the algorithm
used to determine the retransmission timeout. In
particular, when the timeout algorithm is rsre(3),
an object of this type has the semantics of the
LBOUND quantity described in RFC 793."
::= { tcp 2 }
tcpRtoMax OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The maximum value permitted by a TCP
implementation for the retransmission timeout,
measured in milliseconds. More refined semantics
for objects of this type depend upon the algorithm
used to determine the retransmission timeout. In
particular, when the timeout algorithm is rsre(3),
an object of this type has the semantics of the
UBOUND quantity described in RFC 793."
::= { tcp 3 }
tcpMaxConn OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The limit on the total number of TCP connections
the entity can support. In entities where the
maximum number of connections is dynamic, this
object should contain the value -1."
::= { tcp 4 }
tcpActiveOpens OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times TCP connections have made a
direct transition to the SYN-SENT state from the
CLOSED state."
::= { tcp 5 }
tcpPassiveOpens OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times TCP connections have made a
direct transition to the SYN-RCVD state from the
LISTEN state."
::= { tcp 6 }
tcpAttemptFails OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times TCP connections have made a
direct transition to the CLOSED state from either
the SYN-SENT state or the SYN-RCVD state, plus the
number of times TCP connections have made a direct
transition to the LISTEN state from the SYN-RCVD
state."
::= { tcp 7 }
tcpEstabResets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times TCP connections have made a
direct transition to the CLOSED state from either
the ESTABLISHED state or the CLOSE-WAIT state."
::= { tcp 8 }
tcpCurrEstab OBJECT-TYPE
SYNTAX Gauge
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of TCP connections for which the
current state is either ESTABLISHED or CLOSE-
WAIT."
::= { tcp 9 }
tcpInSegs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of segments received, including
those received in error. This count includes
segments received on currently established
connections."
::= { tcp 10 }
tcpOutSegs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of segments sent, including
those on current connections but excluding those
containing only retransmitted octets."
::= { tcp 11 }
tcpRetransSegs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of segments retransmitted - that
is, the number of TCP segments transmitted
containing one or more previously transmitted
octets."
::= { tcp 12 }
-- the TCP Connection table
-- The TCP connection table contains information about this
-- entity's existing TCP connections.
tcpConnTable OBJECT-TYPE
SYNTAX SEQUENCE OF TcpConnEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table containing TCP connection-specific
information."
::= { tcp 13 }
tcpConnEntry OBJECT-TYPE
SYNTAX TcpConnEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Information about a particular current TCP
connection. An object of this type is transient,
in that it ceases to exist when (or soon after)
the connection makes the transition to the CLOSED
state."
INDEX { tcpConnLocalAddress,
tcpConnLocalPort,
tcpConnRemAddress,
tcpConnRemPort }
::= { tcpConnTable 1 }
TcpConnEntry ::=
SEQUENCE {
tcpConnState
INTEGER,
tcpConnLocalAddress
IpAddress,
tcpConnLocalPort
INTEGER (0..65535),
tcpConnRemAddress
IpAddress,
tcpConnRemPort
INTEGER (0..65535)
}
tcpConnState OBJECT-TYPE
SYNTAX INTEGER {
closed(1),
listen(2),
synSent(3),
synReceived(4),
established(5),
finWait1(6),
finWait2(7),
closeWait(8),
lastAck(9),
closing(10),
timeWait(11),
deleteTCB(12)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The state of this TCP connection.
The only value which may be set by a management
station is deleteTCB(12). Accordingly, it is
appropriate for an agent to return a `badValue'
response if a management station attempts to set
this object to any other value.
If a management station sets this object to the
value deleteTCB(12), then this has the effect of
deleting the TCB (as defined in RFC 793) of the
corresponding connection on the managed node,
resulting in immediate termination of the
connection.
As an implementation-specific option, a RST
segment may be sent from the managed node to the
other TCP endpoint (note however that RST segments
are not sent reliably)."
::= { tcpConnEntry 1 }
tcpConnLocalAddress OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The local IP address for this TCP connection. In
the case of a connection in the listen state which
is willing to accept connections for any IP
interface associated with the node, the value
0.0.0.0 is used."
::= { tcpConnEntry 2 }
tcpConnLocalPort OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The local port number for this TCP connection."
::= { tcpConnEntry 3 }
tcpConnRemAddress OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The remote IP address for this TCP connection."
::= { tcpConnEntry 4 }
tcpConnRemPort OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The remote port number for this TCP connection."
::= { tcpConnEntry 5 }
-- additional TCP objects
tcpInErrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of segments received in error
(e.g., bad TCP checksums)."
::= { tcp 14 }
tcpOutRsts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of TCP segments sent containing the
RST flag."
::= { tcp 15 }
-- the UDP group
-- Implementation of the UDP group is mandatory for all
-- systems which implement the UDP.
udpInDatagrams OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of UDP datagrams delivered to
UDP users."
::= { udp 1 }
udpNoPorts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of received UDP datagrams for
which there was no application at the destination
port."
::= { udp 2 }
udpInErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of received UDP datagrams that could
not be delivered for reasons other than the lack
of an application at the destination port."
::= { udp 3 }
udpOutDatagrams OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of UDP datagrams sent from this
entity."
::= { udp 4 }
-- the UDP Listener table
-- The UDP listener table contains information about this
-- entity's UDP end-points on which a local application is
-- currently accepting datagrams.
udpTable OBJECT-TYPE
SYNTAX SEQUENCE OF UdpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table containing UDP listener information."
::= { udp 5 }
udpEntry OBJECT-TYPE
SYNTAX UdpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Information about a particular current UDP
listener."
INDEX { udpLocalAddress, udpLocalPort }
::= { udpTable 1 }
UdpEntry ::=
SEQUENCE {
udpLocalAddress
IpAddress,
udpLocalPort
INTEGER (0..65535)
}
udpLocalAddress OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The local IP address for this UDP listener. In
the case of a UDP listener which is willing to
accept datagrams for any IP interface associated
with the node, the value 0.0.0.0 is used."
::= { udpEntry 1 }
udpLocalPort OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The local port number for this UDP listener."
::= { udpEntry 2 }
-- the Transmission group
-- Based on the transmission media underlying each interface
-- on a system, the corresponding portion of the Transmission
-- group is mandatory for that system.
-- When Internet-standard definitions for managing
-- transmission media are defined, the transmission group is
-- used to provide a prefix for the names of those objects.
-- Typically, such definitions reside in the experimental
-- portion of the MIB until they are "proven", then as a
-- part of the Internet standardization process, the
-- definitions are accordingly elevated and a new object
-- identifier, under the transmission group is defined. By
-- convention, the name assigned is:
--
-- type OBJECT IDENTIFIER ::= { transmission number }
--
-- where "type" is the symbolic value used for the media in
-- the ifType column of the ifTable object, and "number" is
-- the actual integer value corresponding to the symbol.
-- the SNMP group
-- Implementation of the SNMP group is mandatory for all
-- systems which support an SNMP protocol entity. Some of
-- the objects defined below will be zero-valued in those
-- SNMP implementations that are optimized to support only
-- those functions specific to either a management agent or
-- a management station. In particular, it should be
-- observed that the objects below refer to an SNMP entity,
-- and there may be several SNMP entities residing on a
-- managed node (e.g., if the node is hosting acting as
-- a management station).
snmpInPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of Messages delivered to the
SNMP entity from the transport service."
::= { snmp 1 }
snmpOutPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Messages which were
passed from the SNMP protocol entity to the
transport service."
::= { snmp 2 }
snmpInBadVersions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Messages which were
delivered to the SNMP protocol entity and were for
an unsupported SNMP version."
::= { snmp 3 }
snmpInBadCommunityNames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Messages delivered to
the SNMP protocol entity which used a SNMP
community name not known to said entity."
::= { snmp 4 }
snmpInBadCommunityUses OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Messages delivered to
the SNMP protocol entity which represented an SNMP
operation which was not allowed by the SNMP
community named in the Message."
::= { snmp 5 }
snmpInASNParseErrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of ASN.1 or BER errors
encountered by the SNMP protocol entity when
decoding received SNMP Messages."
::= { snmp 6 }
-- { snmp 7 } is not used
snmpInTooBigs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP PDUs which were
delivered to the SNMP protocol entity and for
which the value of the error-status field is
`tooBig'."
::= { snmp 8 }
snmpInNoSuchNames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP PDUs which were
delivered to the SNMP protocol entity and for
which the value of the error-status field is
`noSuchName'."
::= { snmp 9 }
snmpInBadValues OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP PDUs which were
delivered to the SNMP protocol entity and for
which the value of the error-status field is
`badValue'."
::= { snmp 10 }
snmpInReadOnlys OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number valid SNMP PDUs which were
delivered to the SNMP protocol entity and for
which the value of the error-status field is
`readOnly'. It should be noted that it is a
protocol error to generate an SNMP PDU which
contains the value `readOnly' in the error-status
field, as such this object is provided as a means
of detecting incorrect implementations of the
SNMP."
::= { snmp 11 }
snmpInGenErrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP PDUs which were
delivered to the SNMP protocol entity and for
which the value of the error-status field is
`genErr'."
::= { snmp 12 }
snmpInTotalReqVars OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of MIB objects which have been
retrieved successfully by the SNMP protocol entity
as the result of receiving valid SNMP Get-Request
and Get-Next PDUs."
::= { snmp 13 }
snmpInTotalSetVars OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of MIB objects which have been
altered successfully by the SNMP protocol entity
as the result of receiving valid SNMP Set-Request
PDUs."
::= { snmp 14 }
snmpInGetRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Get-Request PDUs which
have been accepted and processed by the SNMP
protocol entity."
::= { snmp 15 }
snmpInGetNexts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Get-Next PDUs which have
been accepted and processed by the SNMP protocol
entity."
::= { snmp 16 }
snmpInSetRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Set-Request PDUs which
have been accepted and processed by the SNMP
protocol entity."
::= { snmp 17 }
snmpInGetResponses OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Get-Response PDUs which
have been accepted and processed by the SNMP
protocol entity."
::= { snmp 18 }
snmpInTraps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Trap PDUs which have
been accepted and processed by the SNMP protocol
entity."
::= { snmp 19 }
snmpOutTooBigs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP PDUs which were
generated by the SNMP protocol entity and for
which the value of the error-status field is
`tooBig.'"
::= { snmp 20 }
snmpOutNoSuchNames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP PDUs which were
generated by the SNMP protocol entity and for
which the value of the error-status is
`noSuchName'."
::= { snmp 21 }
snmpOutBadValues OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP PDUs which were
generated by the SNMP protocol entity and for
which the value of the error-status field is
`badValue'."
::= { snmp 22 }
-- { snmp 23 } is not used
snmpOutGenErrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP PDUs which were
generated by the SNMP protocol entity and for
which the value of the error-status field is
`genErr'."
::= { snmp 24 }
snmpOutGetRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Get-Request PDUs which
have been generated by the SNMP protocol entity."
::= { snmp 25 }
snmpOutGetNexts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Get-Next PDUs which have
been generated by the SNMP protocol entity."
::= { snmp 26 }
snmpOutSetRequests OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Set-Request PDUs which
have been generated by the SNMP protocol entity."
::= { snmp 27 }
snmpOutGetResponses OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Get-Response PDUs which
have been generated by the SNMP protocol entity."
::= { snmp 28 }
snmpOutTraps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of SNMP Trap PDUs which have
been generated by the SNMP protocol entity."
::= { snmp 29 }
snmpEnableAuthenTraps OBJECT-TYPE
SYNTAX INTEGER { enabled(1), disabled(2) }
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Indicates whether the SNMP agent process is
permitted to generate authentication-failure
traps. The value of this object overrides any
configuration information; as such, it provides a
means whereby all authentication-failure traps may
be disabled.
Note that it is strongly recommended that this
object be stored in non-volatile memory so that it
remains constant between re-initializations of the
network management system."
::= { snmp 30 }
-- the SMT group
-- Implementation of the SMT group is mandatory for all
-- systems which implement manageable FDDI subsystems.
fddimibSMTNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of SMT implementations (regardless of
their current state) on this network management
application entity. The value for this variable
must remain constant at least from one re-
initialization of the entity's network management
system to the next re-initialization."
::= { fddimibSMT 1 }
-- the SMT table
fddimibSMTTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibSMTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of SMT entries. The number of entries
shall not exceed the value of fddimibSMTNumber."
::= { fddimibSMT 2 }
fddimibSMTEntry OBJECT-TYPE
SYNTAX FddimibSMTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An SMT entry containing information common to a
given SMT."
INDEX { fddimibSMTIndex }
::= { fddimibSMTTable 1 }
FddimibSMTEntry ::=
SEQUENCE {
fddimibSMTIndex
INTEGER,
fddimibSMTStationId
FddiSMTStationIdType,
fddimibSMTOpVersionId
INTEGER,
fddimibSMTHiVersionId
INTEGER,
fddimibSMTLoVersionId
INTEGER,
fddimibSMTUserData
OCTET STRING,
fddimibSMTMIBVersionId
INTEGER,
fddimibSMTMACCts
INTEGER,
fddimibSMTNonMasterCts
INTEGER,
fddimibSMTMasterCts
INTEGER,
fddimibSMTAvailablePaths
INTEGER,
fddimibSMTConfigCapabilities
INTEGER,
fddimibSMTConfigPolicy
INTEGER,
fddimibSMTConnectionPolicy
INTEGER,
fddimibSMTTNotify
INTEGER,
fddimibSMTStatRptPolicy
INTEGER,
fddimibSMTTraceMaxExpiration
FddiTimeMilli,
fddimibSMTBypassPresent
INTEGER,
fddimibSMTECMState
INTEGER,
fddimibSMTCFState
INTEGER,
fddimibSMTRemoteDisconnectFlag
INTEGER,
fddimibSMTStationStatus
INTEGER,
fddimibSMTPeerWrapFlag
INTEGER,
fddimibSMTTimeStamp
FddiTimeMilli,
fddimibSMTTransitionTimeStamp
FddiTimeMilli,
fddimibSMTStationAction
INTEGER
}
fddimibSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A unique value for each SMT. The value for each
SMT must remain constant at least from one re-
initialization of the entity's network management
system to the next re-initialization."
::= { fddimibSMTEntry 1 }
fddimibSMTStationId OBJECT-TYPE
SYNTAX FddiSMTStationIdType -- OCTET STRING (SIZE (8))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Used to uniquely identify an FDDI station."
REFERENCE
"ANSI { fddiSMT 11 }"
::= { fddimibSMTEntry 2 }
fddimibSMTOpVersionId OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The version that this station is using for its
operation (refer to ANSI 7.1.2.2). The value of
this variable is 2 for this SMT revision."
REFERENCE
"ANSI { fddiSMT 13 }"
::= { fddimibSMTEntry 3 }
fddimibSMTHiVersionId OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The highest version of SMT that this station
supports (refer to ANSI 7.1.2.2)."
REFERENCE
"ANSI { fddiSMT 14 }"
::= { fddimibSMTEntry 4 }
fddimibSMTLoVersionId OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The lowest version of SMT that this station
supports (refer to ANSI 7.1.2.2)."
REFERENCE
"ANSI { fddiSMT 15 }"
::= { fddimibSMTEntry 5 }
fddimibSMTUserData OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (32))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This variable contains 32 octets of user defined
information. The information shall be an ASCII
string."
REFERENCE
"ANSI { fddiSMT 17 }"
::= { fddimibSMTEntry 6 }
fddimibSMTMIBVersionId OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The version of the FDDI MIB of this station. The
value of this variable is 1 for this SMT
revision."
REFERENCE
"ANSI { fddiSMT 18 }"
::= { fddimibSMTEntry 7 }
fddimibSMTMACCts OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of MACs in this station or
concentrator."
REFERENCE
"ANSI { fddiSMT 21 }"
::= { fddimibSMTEntry 8 }
fddimibSMTNonMasterCts OBJECT-TYPE
SYNTAX INTEGER (0..2)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this variable is the number of A, B,
and S ports in this station or concentrator."
REFERENCE
"ANSI { fddiSMT 22 }"
::= { fddimibSMTEntry 9 }
fddimibSMTMasterCts OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of M Ports in a node. If the node is
not a concentrator, the value of the variable is
zero."
REFERENCE
"ANSI { fddiSMT 23 }"
::= { fddimibSMTEntry 10 }
fddimibSMTAvailablePaths OBJECT-TYPE
SYNTAX INTEGER (0..7)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A value that indicates the PATH types available
in the station.
The value is a sum. This value initially takes
the value zero, then for each type of PATH that
this node has available, 2 raised to a power is
added to the sum. The powers are according to the
following table:
Path Power
Primary 0
Secondary 1
Local 2
For example, a station having Primary and Local
PATHs available would have a value of 5 (2**0 +
2**2)."
REFERENCE
"ANSI { fddiSMT 24 }"
::= { fddimibSMTEntry 11 }
fddimibSMTConfigCapabilities OBJECT-TYPE
SYNTAX INTEGER (0..3)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A value that indicates the configuration
capabilities of a node. The 'Hold Available' bit
indicates the support of the optional Hold
Function, which is controlled by
fddiSMTConfigPolicy. The 'CF-Wrap-AB' bit
indicates that the station has the capability of
performing a wrap_ab (refer to ANSI SMT 9.7.2.2).
The value is a sum. This value initially takes
the value zero, then for each of the configuration
policies currently enforced on the node, 2 raised
to a power is added to the sum. The powers are
according to the following table:
Policy Power
holdAvailable 0
CF-Wrap-AB 1 "
REFERENCE
"ANSI { fddiSMT 25 }"
::= { fddimibSMTEntry 12 }
fddimibSMTConfigPolicy OBJECT-TYPE
SYNTAX INTEGER (0..1)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A value that indicates the configuration policies
currently desired in a node. 'Hold' is one of the
terms used for the Hold Flag, an optional ECM flag
used to enable the optional Hold policy.
The value is a sum. This value initially takes
the value zero, then for each of the configuration
policies currently enforced on the node, 2 raised
to a power is added to the sum. The powers are
according to the following table:
Policy Power
configurationhold 0 "
REFERENCE
"ANSI { fddiSMT 26 }"
::= { fddimibSMTEntry 13 }
fddimibSMTConnectionPolicy OBJECT-TYPE
SYNTAX INTEGER (32768..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A value representing the connection policies in
effect in a node. A station sets the corresponding
bit for each of the connection types that it
rejects. The letter designations, X and Y, in the
'rejectX-Y' names have the following significance:
X represents the PC-Type of the local PORT and Y
represents the PC_Type of the adjacent PORT
(PC_Neighbor). The evaluation of Connection-
Policy (PC-Type, PC-Neighbor) is done to determine
the setting of T- Val(3) in the PC-Signalling
sequence (refer to ANSI 9.6.3). Note that Bit 15,
(rejectM-M), is always set and cannot be cleared.
The value is a sum. This value initially takes
the value zero, then for each of the connection
policies currently enforced on the node, 2 raised
to a power is added to the sum. The powers are
according to the following table:
Policy Power
rejectA-A 0
rejectA-B 1
rejectA-S 2
rejectA-M 3
rejectB-A 4
rejectB-B 5
rejectB-S 6
rejectB-M 7
rejectS-A 8
rejectS-B 9
rejectS-S 10
rejectS-M 11
rejectM-A 12
rejectM-B 13
rejectM-S 14
rejectM-M 15 "
REFERENCE
"ANSI { fddiSMT 27 }"
::= { fddimibSMTEntry 14 }
fddimibSMTTNotify OBJECT-TYPE
SYNTAX INTEGER (2..30)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The timer, expressed in seconds, used in the
Neighbor Notification protocol. It has a range of
2 seconds to 30 seconds, and its default value is
30 seconds (refer to ANSI SMT 8.2)."
REFERENCE
"ANSI { fddiSMT 29 }"
::= { fddimibSMTEntry 15 }
fddimibSMTStatRptPolicy OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-write
STATUS mandatory
DESCRIPTION
"If true, indicates that the node will generate
Status Reporting Frames for its implemented events
and conditions. It has an initial value of true.
This variable determines the value of the
SR_Enable Flag (refer to ANSI SMT 8.3.2.1)."
REFERENCE
"ANSI { fddiSMT 30 }"
::= { fddimibSMTEntry 16 }
fddimibSMTTraceMaxExpiration OBJECT-TYPE
SYNTAX FddiTimeMilli
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Reference Trace_Max (refer to ANSI SMT
9.4.4.2.2)."
REFERENCE
"ANSI { fddiSMT 31 }"
::= { fddimibSMTEntry 17 }
fddimibSMTBypassPresent OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A flag indicating if the station has a bypass on
its AB port pair."
REFERENCE
"ANSI { fddiSMT 34 }"
::= { fddimibSMTEntry 18 }
fddimibSMTECMState OBJECT-TYPE
SYNTAX INTEGER {
ec0(1), -- Out
ec1(2), -- In
ec2(3), -- Trace
ec3(4), -- Leave
ec4(5), -- Path_Test
ec5(6), -- Insert
ec6(7), -- Check
ec7(8) -- Deinsert
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the current state of the ECM state
machine (refer to ANSI SMT 9.5.2)."
REFERENCE
"ANSI { fddiSMT 41 }"
::= { fddimibSMTEntry 19 }
fddimibSMTCFState OBJECT-TYPE
SYNTAX INTEGER {
cf0(1), -- isolated
cf1(2), -- local_a
cf2(3), -- local_b
cf3(4), -- local_ab
cf4(5), -- local_s
cf5(6), -- wrap_a
cf6(7), -- wrap_b
cf7(8), -- wrap_ab
cf8(9), -- wrap_s
cf9(10), -- c_wrap_a
cf10(11), -- c_wrap_b
cf11(12), -- c_wrap_s
cf12(13) -- thru
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The attachment configuration for the station or
concentrator (refer to ANSI SMT 9.7.2.2)."
REFERENCE
"ANSI { fddiSMT 42 }"
::= { fddimibSMTEntry 20 }
fddimibSMTRemoteDisconnectFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A flag indicating that the station was remotely
disconnected from the network as a result of
receiving an fddiSMTAction, disconnect (refer to
ANSI SMT 6.4.5.3) in a Parameter Management Frame.
A station requires a Connect Action to rejoin and
clear the flag (refer to ANSI SMT 6.4.5.2)."
REFERENCE
"ANSI { fddiSMT 44 }"
::= { fddimibSMTEntry 21 }
fddimibSMTStationStatus OBJECT-TYPE
SYNTAX INTEGER { concatenated(1), separated(2), thru(3) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The current status of the primary and secondary
paths within this station."
REFERENCE
"ANSI { fddiSMT 45 }"
::= { fddimibSMTEntry 22 }
fddimibSMTPeerWrapFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable assumes the value of the
PeerWrapFlag in CFM (refer to ANSI SMT
9.7.2.4.4)."
REFERENCE
"ANSI { fddiSMT 46 }"
::= { fddimibSMTEntry 23 }
fddimibSMTTimeStamp OBJECT-TYPE
SYNTAX FddiTimeMilli
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable assumes the value of TimeStamp
(refer to ANSI SMT 8.3.2.1)."
REFERENCE
"ANSI { fddiSMT 51 }"
::= { fddimibSMTEntry 24 }
fddimibSMTTransitionTimeStamp OBJECT-TYPE
SYNTAX FddiTimeMilli
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable assumes the value of
TransitionTimeStamp (refer to ANSI SMT 8.3.2.1)."
REFERENCE
"ANSI { fddiSMT 52 }"
::= { fddimibSMTEntry 25 }
fddimibSMTStationAction OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
connect(2),
disconnect(3),
path-Test(4),
self-Test(5)
-- disable-a(6), set not allowed
-- disable-b(7), set not allowed
-- disable-m(8) set not allowed
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object, when read, always returns a value of
other(1). The behavior of setting this variable
to each of the acceptable values is as follows:
other(1): Results in an appropriate error.
connect(2): Generates a Connect signal to ECM
to begin a connection sequence. See ANSI
Ref 9.4.2.
disconnect(3): Generates a Disconnect signal
to ECM. see ANSI Ref 9.4.2.
path-Test(4): Initiates a station Path_Test.
The Path_Test variable (see ANSI Ref
9.4.1) is set to 'Testing'. The results
of this action are not specified in this
standard.
self-Test(5): Initiates a station Self_Test.
The results of this action are not
specified in this standard.
disable-a(6): Causes a PC_Disable on the A
port if the A port mode is peer.
disable-b(7): Causes a PC_Disable on the B
port if the B port mode is peer.
disable-m(8): Causes a PC_Disable on all M
ports.
Attempts to set this object to all other values
results in an appropriate error. The result of
setting this variable to path-Test(4) or self-
Test(5) is implementation-specific."
REFERENCE
"ANSI { fddiSMT 60 }"
::= { fddimibSMTEntry 26 }
-- the MAC group
-- Implementation of the MAC Group is mandatory for all
-- systems which implement manageable FDDI subsystems.
fddimibMACNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of MAC implementations (across
all SMTs) on this network management application
entity. The value for this variable must remain
constant at least from one re-initialization of
the entity's network management system to the next
re-initialization."
::= { fddimibMAC 1 }
-- the MAC table
fddimibMACTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibMACEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of MAC entries. The number of entries
shall not exceed the value of fddimibMACNumber."
::= { fddimibMAC 2 }
fddimibMACEntry OBJECT-TYPE
SYNTAX FddimibMACEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A MAC entry containing information common to a
given MAC."
INDEX { fddimibMACSMTIndex, fddimibMACIndex }
::= { fddimibMACTable 1 }
FddimibMACEntry ::=
SEQUENCE {
fddimibMACSMTIndex
INTEGER,
fddimibMACIndex
INTEGER,
fddimibMACIfIndex
INTEGER,
fddimibMACFrameStatusFunctions
INTEGER,
fddimibMACTMaxCapability
FddiTimeNano,
fddimibMACTVXCapability
FddiTimeNano,
fddimibMACAvailablePaths
INTEGER,
fddimibMACCurrentPath
INTEGER,
fddimibMACUpstreamNbr
FddiMACLongAddressType,
fddimibMACDownstreamNbr
FddiMACLongAddressType,
fddimibMACOldUpstreamNbr
FddiMACLongAddressType,
fddimibMACOldDownstreamNbr
FddiMACLongAddressType,
fddimibMACDupAddressTest
INTEGER,
fddimibMACRequestedPaths
INTEGER,
fddimibMACDownstreamPORTType
INTEGER,
fddimibMACSMTAddress
FddiMACLongAddressType,
fddimibMACTReq
FddiTimeNano,
fddimibMACTNeg
FddiTimeNano,
fddimibMACTMax
FddiTimeNano,
fddimibMACTvxValue
FddiTimeNano,
fddimibMACFrameCts
Counter,
fddimibMACCopiedCts
Counter,
fddimibMACTransmitCts
Counter,
fddimibMACErrorCts
Counter,
fddimibMACLostCts
Counter,
fddimibMACFrameErrorThreshold
INTEGER,
fddimibMACFrameErrorRatio
INTEGER,
fddimibMACRMTState
INTEGER,
fddimibMACDaFlag
INTEGER,
fddimibMACUnaDaFlag
INTEGER,
fddimibMACFrameErrorFlag
INTEGER,
fddimibMACMAUnitdataAvailable
INTEGER,
fddimibMACHardwarePresent
INTEGER,
fddimibMACMAUnitdataEnable
INTEGER
}
fddimibMACSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the SMT index associated with this
MAC."
::= { fddimibMACEntry 1 }
fddimibMACIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Index variable for uniquely identifying the MAC
object instances, which is the same as the
corresponding resource index in SMT."
REFERENCE
"ANSI { fddiMAC 34 }"
::= { fddimibMACEntry 2 }
fddimibMACIfIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the MIB-II ifIndex corresponding to
this MAC. If none is applicable, 0 is returned."
REFERENCE
"MIB-II"
::= { fddimibMACEntry 3 }
fddimibMACFrameStatusFunctions OBJECT-TYPE
SYNTAX INTEGER (0..7)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the MAC's optional Frame Status
processing functions.
The value is a sum. This value initially takes
the value zero, then for each function present, 2
raised to a power is added to the sum. The powers
are according to the following table:
function Power
fs-repeating 0
fs-setting 1
fs-clearing 2 "
REFERENCE
"ANSI { fddiMAC 11 }"
::= { fddimibMACEntry 4 }
fddimibMACTMaxCapability OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the maximum time value of fddiMACTMax
that this MAC can support."
REFERENCE
"ANSI { fddiMAC 13 }"
::= { fddimibMACEntry 5 }
fddimibMACTVXCapability OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the maximum time value of
fddiMACTvxValue that this MAC can support."
REFERENCE
"ANSI { fddiMAC 14 }"
::= { fddimibMACEntry 6 }
fddimibMACAvailablePaths OBJECT-TYPE
SYNTAX INTEGER (0..7)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the paths available for this MAC (refer
to ANSI SMT 9.7.7).
The value is a sum. This value initially takes
the value zero, then for each type of PATH that
this MAC has available, 2 raised to a power is
added to the sum. The powers are according to the
following table:
Path Power
Primary 0
Secondary 1
Local 2 "
REFERENCE
"ANSI { fddiMAC 22 }"
::= { fddimibMACEntry 7 }
fddimibMACCurrentPath OBJECT-TYPE
SYNTAX INTEGER {
isolated(1),
local(2),
secondary(3),
primary(4),
concatenated(5),
thru(6)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the Path into which this MAC is
currently inserted (refer to ANSI 9.7.7)."
REFERENCE
"ANSI { fddiMAC 23 }"
::= { fddimibMACEntry 8 }
fddimibMACUpstreamNbr OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The MAC's upstream neighbor's long individual MAC
address. It has an initial value of the SMT-
Unknown-MAC Address and is only modified as
specified by the Neighbor Information Frame
protocol (refer to ANSI SMT 7.2.1 and 8.2)."
REFERENCE
"ANSI { fddiMAC 24 }"
::= { fddimibMACEntry 9 }
fddimibMACDownstreamNbr OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The MAC's downstream neighbor's long individual
MAC address. It has an initial value of the SMT-
Unknown-MAC Address and is only modified as
specified by the Neighbor Information Frame
protocol (refer to ANSI SMT 7.2.1 and 8.2)."
REFERENCE
"ANSI { fddiMAC 25 }"
::= { fddimibMACEntry 10 }
fddimibMACOldUpstreamNbr OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The previous value of the MAC's upstream
neighbor's long individual MAC address. It has an
initial value of the SMT-Unknown- MAC Address and
is only modified as specified by the Neighbor
Information Frame protocol (refer to ANSI SMT
7.2.1 and 8.2)."
REFERENCE
"ANSI { fddiMAC 26 }"
::= { fddimibMACEntry 11 }
fddimibMACOldDownstreamNbr OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The previous value of the MAC's downstream
neighbor's long individual MAC address. It has an
initial value of the SMT- Unknown-MAC Address and
is only modified as specified by the Neighbor
Information Frame protocol (refer to ANSI SMT
7.2.1 and 8.2)."
REFERENCE
"ANSI { fddiMAC 27 }"
::= { fddimibMACEntry 12 }
fddimibMACDupAddressTest OBJECT-TYPE
SYNTAX INTEGER { none(1), pass(2), fail(3) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The Duplicate Address Test flag, Dup_Addr_Test
(refer to ANSI 8.2)."
REFERENCE
"ANSI { fddiMAC 29 }"
::= { fddimibMACEntry 13 }
fddimibMACRequestedPaths OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"List of permitted Paths which specifies the
Path(s) into which the MAC may be inserted (refer
to ansi SMT 9.7).
The value is a sum which represents the individual
paths that are desired. This value initially
takes the value zero, then for each type of PATH
that this node is, 2 raised to a power is added to
the sum. The powers are according to the
following table:
Path Power
local 0
secondary-alternate 1
primary-alternate 2
concatenated-alternate 3
secondary-preferred 4
primary-preferred 5
concatenated-preferred 6
thru 7 "
REFERENCE
"ANSI { fddiMAC 32 }"
::= { fddimibMACEntry 14 }
fddimibMACDownstreamPORTType OBJECT-TYPE
SYNTAX INTEGER { a(1), b(2), s(3), m(4), none(5) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the PC-Type of the first port that is
downstream of this MAC (the exit port)."
REFERENCE
"ANSI { fddiMAC 33 }"
::= { fddimibMACEntry 15 }
fddimibMACSMTAddress OBJECT-TYPE
SYNTAX FddiMACLongAddressType -- OCTET STRING (SIZE (6))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The 48-bit individual address of the MAC used for
SMT frames."
REFERENCE
"ANSI { fddiMAC 41 }"
::= { fddimibMACEntry 16 }
fddimibMACTReq OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable is the T_Req_value passed to the
MAC. Without having detected a duplicate, the
time value of this variable shall assume the
maximum supported time value which is less than or
equal to the time value of fddiPATHMaxT-Req. When
a MAC has an address detected as a duplicate, it
may use a time value for this variable greater
than the time value of fddiPATHTMaxLowerBound. A
station shall cause claim when the new T_Req may
cause the value of T_Neg to change in the claim
process, (i.e., time value new T_Req < T_Neg, or
old T_Req = T_Neg)."
REFERENCE
"ANSI { fddiMAC 51 }"
::= { fddimibMACEntry 17 }
fddimibMACTNeg OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"It is reported as a FddiTimeNano number."
REFERENCE
"ANSI { fddiMAC 52 }"
::= { fddimibMACEntry 18 }
fddimibMACTMax OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable is the T_Max_value passed to the
MAC. The time value of this variable shall assume
the minimum suported time value which is greater
than or equal to the time value of fddiPATHT-
MaxLowerBound"
REFERENCE
"ANSI { fddiMAC 53 }"
::= { fddimibMACEntry 19 }
fddimibMACTvxValue OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable is the TVX_value passed to the MAC.
The time value of this variable shall assume the
minimum suported time value which is greater than
or equal to the time value of
fddiPATHTVXLowerBound."
REFERENCE
"ANSI { fddiMAC 54 }"
::= { fddimibMACEntry 20 }
fddimibMACFrameCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of frames received by this
MAC (refer to ANSI MAC 7.5.1)."
REFERENCE
"ANSI { fddiMAC 71 }"
::= { fddimibMACEntry 21 }
fddimibMACCopiedCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count that should as closely as possible match
the number of frames addressed to (A bit set) and
successfully copied into the station's receive
buffers (C bit set) by this MAC (refer to ANSI MAC
7.5). Note that this count does not include MAC
frames."
REFERENCE
"ANSI { fddiMAC 72 }"
::= { fddimibMACEntry 22 }
fddimibMACTransmitCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count that should as closely as possible match
the number of frames transmitted by this MAC
(refer to ANSI MAC 7.5). Note that this count
does not include MAC frames."
REFERENCE
"ANSI { fddiMAC 73 }"
::= { fddimibMACEntry 23 }
fddimibMACErrorCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of frames that were
detected in error by this MAC that had not been
detected in error by another MAC (refer to ANSI
MAC 7.5.2)."
REFERENCE
"ANSI { fddiMAC 81 }"
::= { fddimibMACEntry 24 }
fddimibMACLostCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count of the number of instances that this MAC
detected a format error during frame reception
such that the frame was stripped (refer to ANSI
MAC 7.5.3)."
REFERENCE
"ANSI { fddiMAC 82 }"
::= { fddimibMACEntry 25 }
fddimibMACFrameErrorThreshold OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A threshold for determining when a MAC Condition
report (see ANSI 8.3.1.1) shall be generated.
Stations not supporting variable thresholds shall
have a value of 0 and a range of (0..0)."
REFERENCE
"ANSI { fddiMAC 95 }"
::= { fddimibMACEntry 26 }
fddimibMACFrameErrorRatio OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable is the value of the ratio,
((delta fddiMACLostCts + delta fddiMACErrorCts) /
(delta fddiMACFrameCts + delta fddiMACLostCts ))
* 2**16 "
REFERENCE
"ANSI { fddiMAC 96 }"
::= { fddimibMACEntry 27 }
fddimibMACRMTState OBJECT-TYPE
SYNTAX INTEGER {
rm0(1), -- Isolated
rm1(2), -- Non_Op
rm2(3), -- Ring_Op
rm3(4), -- Detect
rm4(5), -- Non_Op_Dup
rm5(6), -- Ring_Op_Dup
rm6(7), -- Directed
rm7(8) -- Trace
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the current state of the RMT State
Machine (refer to ANSI 10.3.2)."
REFERENCE
"ANSI { fddiMAC 111 }"
::= { fddimibMACEntry 28 }
fddimibMACDaFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The RMT flag Duplicate Address Flag, DA_Flag
(refer to ANSI 10.2.1.2)."
REFERENCE
"ANSI { fddiMAC 112 }"
::= { fddimibMACEntry 29 }
fddimibMACUnaDaFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A flag, UNDA_Flag (refer to ANSI 8.2.2.1), set
when the upstream neighbor reports a duplicate
address condition. Cleared when the condition
clears."
REFERENCE
"ANSI { fddiMAC 113 }"
::= { fddimibMACEntry 30 }
fddimibMACFrameErrorFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the MAC Frame Error Condition is
present when set. Cleared when the condition
clears and on station initialization."
REFERENCE
"ANSI { fddiMAC 114 }"
::= { fddimibMACEntry 31 }
fddimibMACMAUnitdataAvailable OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable shall take on the value of the
MAC_Avail flag defined in RMT."
REFERENCE
"ANSI { fddiMAC 116 }"
::= { fddimibMACEntry 32 }
fddimibMACHardwarePresent OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates the presence of
underlying hardware support for this MAC object.
If the value of this object is false(2), the
reporting of the objects in this entry may be
handled in an implementation-specific manner."
REFERENCE
"ANSI { fddiMAC 117 }"
::= { fddimibMACEntry 33 }
fddimibMACMAUnitdataEnable OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This variable determines the value of the
MA_UNITDATA_Enable flag in RMT. The default and
initial value of this flag is true(1)."
REFERENCE
"ANSI { fddiMAC 118 }"
::= { fddimibMACEntry 34 }
-- the Enhanced MAC Counters group
-- Implementation of this Group is optional, but systems
-- claiming support must implement all variables in this
-- group
-- the MAC Counters table
fddimibMACCountersTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibMACCountersEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of MAC Counters entries. The number of
entries shall not exceed the value of
fddimibMACNumber."
::= { fddimibMACCounters 1 }
fddimibMACCountersEntry OBJECT-TYPE
SYNTAX FddimibMACCountersEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A MAC Counters entry containing information
common to a given MAC."
INDEX { pseudoMACSMTIndex, pseudoMACIndex }
::= { fddimibMACCountersTable 1 }
FddimibMACCountersEntry ::=
SEQUENCE {
fddimibMACTokenCts
Counter,
fddimibMACTvxExpiredCts
Counter,
fddimibMACNotCopiedCts
Counter,
fddimibMACLateCts
Counter,
fddimibMACRingOpCts
Counter,
fddimibMACNotCopiedRatio
INTEGER,
fddimibMACNotCopiedFlag
INTEGER,
fddimibMACNotCopiedThreshold
INTEGER,
pseudoMACSMTIndex
INTEGER,
pseudoMACIndex
INTEGER
}
fddimibMACTokenCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count that should as closely as possible match
the number of times the station has received a
token (total of non-restricted and restricted) on
this MAC (see ANSI MAC 7.4). This count is
valuable for determination of network load."
REFERENCE
"ANSI { fddiMAC 74 }"
::= { fddimibMACCountersEntry 1 }
fddimibMACTvxExpiredCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count that should as closely as possible match
the number of times that TVX has expired."
REFERENCE
"ANSI { fddiMAC 83 }"
::= { fddimibMACCountersEntry 2 }
fddimibMACNotCopiedCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count that should as closely as possible match
the number of frames that were addressed to this
MAC but were not copied into its receive buffers
(see ANSI MAC 7.5). For example, this might occur
due to local buffer congestion. Because of
implementation considerations, this count may not
match the actual number of frames not copied. It
is not a requirement that this count be exact.
Note that this count does not include MAC frames."
REFERENCE
"ANSI { fddiMAC 84 }"
::= { fddimibMACCountersEntry 3 }
fddimibMACLateCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A count that should as closely as possible match
the number of TRT expirations since this MAC was
reset or a token was received (refer to ANSI MAC
7.4.5)."
REFERENCE
"ANSI { fddiMAC 85 }"
::= { fddimibMACCountersEntry 4 }
fddimibMACRingOpCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of the number of times the ring has
entered the 'Ring_Operational' state from the
'Ring Not Operational' state. This count is
updated when a SM_MA_STATUS.Indication of a change
in the Ring_Operational status occurs (refer to
ANSI 6.1.4). Because of implementation
considerations, this count may be less than the
actual RingOp_Ct. It is not a requirement that
this count be exact."
REFERENCE
"ANSI { fddiMAC 86 }"
::= { fddimibMACCountersEntry 5 }
fddimibMACNotCopiedRatio OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable is the value of the ratio:
(delta fddiMACNotCopiedCts /
(delta fddiMACCopiedCts +
delta fddiMACNotCopiedCts )) * 2**16 "
REFERENCE
"ANSI { fddiMAC 105 }"
::= { fddimibMACCountersEntry 6 }
fddimibMACNotCopiedFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates that the Not Copied condition is
present when read as true(1). Set to false(2)
when the condition clears and on station
initialization."
REFERENCE
"ANSI { fddiMAC 115 }"
::= { fddimibMACCountersEntry 7 }
fddimibMACNotCopiedThreshold OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A threshold for determining when a MAC condition
report shall be generated. Stations not
supporting variable thresholds shall have a value
of 0 and a range of (0..0)."
REFERENCE
"ANSI { fddiMAC 103 }"
::= { fddimibMACCountersEntry 8 }
pseudoMACSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"The value of the SMT index associated with this
MAC. This MIB is to bypass ISOVIEW's MIB compiler
error message."
::= { fddimibMACCountersEntry 21 }
pseudoMACIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Index variable for uniquely identifying the MAC
object instances, which is the same as the
corresponding resource index in SMT.This
MIB is to bypass ISOVIEW's MIB compiler error
message"
REFERENCE
"ANSI { fddiMAC 34 }"
::= { fddimibMACCountersEntry 22 }
-- the PATH group
-- Implementation of the PATH group is mandatory for all
-- systems which implement manageable FDDI subsystems.
fddimibPATHNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of PATHs possible (across all
SMTs) on this network management application
entity. The value for this variable must remain
constant at least from one re-initialization of
the entity's network management system to the next
re-initialization."
::= { fddimibPATH 1 }
-- the PATH table
fddimibPATHTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibPATHEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of PATH entries. The number of entries
shall not exceed the value of fddimibPATHNumber."
::= { fddimibPATH 2 }
fddimibPATHEntry OBJECT-TYPE
SYNTAX FddimibPATHEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A PATH entry containing information common to a
given PATH."
INDEX { fddimibPATHSMTIndex, fddimibPATHIndex }
::= { fddimibPATHTable 1 }
FddimibPATHEntry ::=
SEQUENCE {
fddimibPATHSMTIndex
INTEGER,
fddimibPATHIndex
INTEGER,
fddimibPATHTVXLowerBound
FddiTimeNano,
fddimibPATHTMaxLowerBound
FddiTimeNano,
fddimibPATHMaxTReq
FddiTimeNano
}
fddimibPATHSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the SMT index associated with this
PATH."
::= { fddimibPATHEntry 1 }
fddimibPATHIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Index variable for uniquely identifying the
primary, secondary and local PATH object
instances. Local PATH object instances are
represented with integer values 3 to 255."
REFERENCE
"ANSI { fddiPATH 11 }"
::= { fddimibPATHEntry 2 }
fddimibPATHTVXLowerBound OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Specifies the minimum time value of
fddiMACTvxValue that shall be used by any MAC that
is configured in this path. The operational value
of fddiMACTvxValue is managed by settting this
variable. This variable has the time value range
of:
0 < fddimibPATHTVXLowerBound < fddimibPATHMaxTReq
Changes to this variable shall either satisfy the
time value relationship:
fddimibPATHTVXLowerBound <=
fddimibMACTVXCapability
of each of the MACs currently on the path, or be
considered out of range. The initial value of
fddimibPATHTVXLowerBound shall be 2500 nsec (2.5
ms)."
REFERENCE
"ANSI { fddiPATH 21 }"
::= { fddimibPATHEntry 3 }
fddimibPATHTMaxLowerBound OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Specifies the minimum time value of fddiMACTMax
that shall be used by any MAC that is configured
in this path. The operational value of
fddiMACTMax is managed by setting this variable.
This variable has the time value range of:
fddimibPATHMaxTReq <= fddimibPATHTMaxLowerBound
and an absolute time value range of:
10000nsec (10 msec) <= fddimibPATHTMaxLowerBound
Changes to this variable shall either satisfy the
time value relationship:
fddimibPATHTMaxLowerBound <
fddimibMACTMaxCapability
of each of the MACs currently on the path, or be
considered out of range. The initial value of
fddimibPATHTMaxLowerBound shall be 165000 nsec
(165 msec)."
REFERENCE
"ANSI { fddiPATH 22 }"
::= { fddimibPATHEntry 4 }
fddimibPATHMaxTReq OBJECT-TYPE
SYNTAX FddiTimeNano
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Specifies the maximum time value of fddiMACT-Req
that shall be used by any MAC that is configured
in this path. The operational value of fddiMACT-
Req is managed by setting this variable. This
variable has the time value range of:
fddimibPATHTVXLowerBound < fddimibPATHMaxTReq <=
fddimibPATHTMaxLowerBound.
The default value of fddimibPATHMaxTReq is 165000
nsec (165 msec)."
REFERENCE
"ANSI { fddiPATH 23 }"
::= { fddimibPATHEntry 5 }
-- the PATH Configuration table
fddimibPATHConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibPATHConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table of Path configuration entries. This
table lists all the resources that may be in this
Path."
REFERENCE
"ANSI { fddiPATH 18 }"
::= { fddimibPATH 3 }
fddimibPATHConfigEntry OBJECT-TYPE
SYNTAX FddimibPATHConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of objects containing information
for a given PATH Configuration entry."
INDEX { fddimibPATHConfigSMTIndex,
fddimibPATHConfigPATHIndex,
fddimibPATHConfigTokenOrder }
::= { fddimibPATHConfigTable 1 }
FddimibPATHConfigEntry ::=
SEQUENCE {
fddimibPATHConfigSMTIndex
INTEGER,
fddimibPATHConfigPATHIndex
INTEGER,
fddimibPATHConfigTokenOrder
INTEGER,
fddimibPATHConfigResourceType
INTEGER,
fddimibPATHConfigResourceIndex
INTEGER,
fddimibPATHConfigCurrentPath
INTEGER
}
fddimibPATHConfigSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the SMT index associated with this
configuration entry."
::= { fddimibPATHConfigEntry 1 }
fddimibPATHConfigPATHIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the PATH resource index associated
with this configuration entry."
::= { fddimibPATHConfigEntry 2 }
fddimibPATHConfigTokenOrder OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An object associated with Token order for this
entry. Thus if the token passes resources a, b, c
and d, in that order, then the value of this
object for these resources would be 1, 2, 3 and 4
respectively."
::= { fddimibPATHConfigEntry 3 }
fddimibPATHConfigResourceType OBJECT-TYPE
SYNTAX INTEGER { mac(2), port(4) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The type of resource associated with this
configuration entry."
::= { fddimibPATHConfigEntry 4 }
fddimibPATHConfigResourceIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the SMT resource index used to refer
to the instance of this MAC or Port resource."
::= { fddimibPATHConfigEntry 5 }
fddimibPATHConfigCurrentPath OBJECT-TYPE
SYNTAX INTEGER {
isolated(1), local(2), secondary(3), primary(4),
concatenated(5), thru(6)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The current insertion status for this resource on
this Path."
::= { fddimibPATHConfigEntry 6 }
-- the PORT group
-- Implementation of the PORT group is mandatory for all
-- systems which implement manageable FDDI subsystems.
fddimibPORTNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of PORT implementations (across
all SMTs) on this network management application
entity. The value for this variable must remain
constant at least from one re-initialization of
the entity's network management system to the next
re-initialization."
::= { fddimibPORT 1 }
-- the PORT table
fddimibPORTTable OBJECT-TYPE
SYNTAX SEQUENCE OF FddimibPORTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of PORT entries. The number of entries
shall not exceed the value of fddimibPORTNumber."
::= { fddimibPORT 2 }
fddimibPORTEntry OBJECT-TYPE
SYNTAX FddimibPORTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A PORT entry containing information common to a
given PORT."
INDEX { fddimibPORTSMTIndex, fddimibPORTIndex }
::= { fddimibPORTTable 1 }
FddimibPORTEntry ::=
SEQUENCE {
fddimibPORTSMTIndex
INTEGER,
fddimibPORTIndex
INTEGER,
fddimibPORTMyType
INTEGER,
fddimibPORTNeighborType
INTEGER,
fddimibPORTConnectionPolicies
INTEGER,
fddimibPORTMACIndicated
INTEGER,
fddimibPORTCurrentPath
INTEGER,
fddimibPORTRequestedPaths
OCTET STRING,
fddimibPORTMACPlacement
FddiResourceId,
fddimibPORTAvailablePaths
INTEGER,
fddimibPORTPMDClass
INTEGER,
fddimibPORTConnectionCapabilities
INTEGER,
fddimibPORTBSFlag
INTEGER,
fddimibPORTLCTFailCts
Counter,
fddimibPORTLerEstimate
INTEGER,
fddimibPORTLemRejectCts
Counter,
fddimibPORTLemCts
Counter,
fddimibPORTLerCutoff
INTEGER,
fddimibPORTLerAlarm
INTEGER,
fddimibPORTConnectState
INTEGER,
fddimibPORTPCMState
INTEGER,
fddimibPORTPCWithhold
INTEGER,
fddimibPORTLerFlag
INTEGER,
fddimibPORTHardwarePresent
INTEGER,
fddimibPORTAction
INTEGER
}
fddimibPORTSMTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the SMT index associated with this
PORT."
::= { fddimibPORTEntry 1 }
fddimibPORTIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A unique value for each PORT within a given SMT,
which is the same as the corresponding resource
index in SMT. The value for each PORT must remain
constant at least from one re-initialization of
the entity's network management system to the next
re-initialization."
REFERENCE
"ANSI { fddiPORT 29 }"
::= { fddimibPORTEntry 2 }
fddimibPORTMyType OBJECT-TYPE
SYNTAX INTEGER { a(1), b(2), s(3), m(4), none(5) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of the PORT's PC_Type (refer to ANSI
9.4.1, and 9.6.3.2)."
REFERENCE
"ANSI { fddiPORT 12 }"
::= { fddimibPORTEntry 3 }
fddimibPORTNeighborType OBJECT-TYPE
SYNTAX INTEGER { a(1), b(2), s(3), m(4), none(5) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The type of the remote PORT as determined in PCM.
This variable has an initial value of none, and is
only modified in PC_RCode(3)_Actions (refer to
ANSI SMT 9.6.3.2)."
REFERENCE
"ANSI { fddiPORT 13 }"
::= { fddimibPORTEntry 4 }
fddimibPORTConnectionPolicies OBJECT-TYPE
SYNTAX INTEGER (0..3)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"A value representing the PORT's connection
policies desired in the node. The value of pc-
mac-lct is a term used in the PC_MAC_LCT Flag (see
9.4.3.2). The value of pc-mac-loop is a term used
in the PC_MAC_Loop Flag.
The value is a sum. This value initially takes
the value zero, then for each PORT policy, 2
raised to a power is added to the sum. The powers
are according to the following table:
Policy Power
pc-mac-lct 0
pc-mac-loop 1 "
REFERENCE
"ANSI { fddiPORT 14 }"
::= { fddimibPORTEntry 5 }
fddimibPORTMACIndicated OBJECT-TYPE
SYNTAX INTEGER {
tVal9FalseRVal9False(1),
tVal9FalseRVal9True(2),
tVal9TrueRVal9False(3),
tVal9TrueRVal9True(4)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The indications (T_Val(9), R_Val(9)) in PC-
Signalling, of the intent to place a MAC in the
output token path to a PORT (refer to ANSI SMT
9.6.3.2.)."
REFERENCE
"ANSI { fddiPORT 15 }"
::= { fddimibPORTEntry 6 }
fddimibPORTCurrentPath OBJECT-TYPE
SYNTAX INTEGER {
ce0(1), -- isolated
ce1(2), -- local
ce2(3), -- secondary
ce3(4), -- primary
ce4(5), -- concatenated
ce5(6) -- thru
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the Path(s) into which this PORT is
currently inserted."
REFERENCE
"ANSI { fddiPORT 16 }"
::= { fddimibPORTEntry 7 }
fddimibPORTRequestedPaths OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (3))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable is a list of permitted Paths where
each list element defines the Port's permitted
Paths. The first octet corresponds to 'none', the
second octet to 'tree', and the third octet to
'peer'."
REFERENCE
"ANSI { fddiPORT 17 }"
::= { fddimibPORTEntry 8 }
fddimibPORTMACPlacement OBJECT-TYPE
SYNTAX FddiResourceId -- INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the MAC, if any, whose transmit path
exits the station via this PORT. The value shall
be zero if there is no MAC associated with the
PORT. Otherwise, the MACIndex of the MAC will be
the value of the variable."
REFERENCE
"ANSI { fddiPORT 18 }"
::= { fddimibPORTEntry 9 }
fddimibPORTAvailablePaths OBJECT-TYPE
SYNTAX INTEGER (0..7)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indicates the Paths which are available to this
Port. In the absence of faults, the A and B Ports
will always have both the Primary and Secondary
Paths available.
The value is a sum. This value initially takes
the value zero, then for each type of PATH that
this port has available, 2 raised to a power is
added to the sum. The powers are according to the
following table:
Path Power
Primary 0
Secondary 1
Local 2 "
REFERENCE
"ANSI { fddiPORT 19 }"
::= { fddimibPORTEntry 10 }
fddimibPORTPMDClass OBJECT-TYPE
SYNTAX INTEGER {
multimode(1),
single-mode1(2),
single-mode2(3),
sonet(4),
low-cost-fiber(5),
twisted-pair(6),
unknown(7),
unspecified(8)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates the type of PMD entity
associated with this port."
REFERENCE
"ANSI { fddiPORT 22 }"
::= { fddimibPORTEntry 11 }
fddimibPORTConnectionCapabilities OBJECT-TYPE
SYNTAX INTEGER (0..3)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A value that indicates the connection
capabilities of the port. The pc-mac-lct bit
indicates that the station has the capability of
setting the PC_MAC_LCT Flag. The pc-mac-loop bit
indicates that the station has the capability of
setting the PC_MAC_Loop Flag (refer to ANSI
9.4.3.2).
The value is a sum. This value initially takes
the value zero, then for each capability that this
port has, 2 raised to a power is added to the sum.
The powers are according to the following table:
capability Power
pc-mac-lct 0
pc-mac-loop 1 "
REFERENCE
"ANSI { fddiPORT 23 }"
::= { fddimibPORTEntry 12 }
fddimibPORTBSFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable assumes the value of the BS_Flag
(refer to ANSI SMT 9.4.3.3)."
REFERENCE
"ANSI { fddiPORT 33 }"
::= { fddimibPORTEntry 13 }
fddimibPORTLCTFailCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of the consecutive times the link
confidence test (LCT) has failed during connection
management (refer to ANSI 9.4.1)."
REFERENCE
"ANSI { fddiPORT 42 }"
::= { fddimibPORTEntry 14 }
fddimibPORTLerEstimate OBJECT-TYPE
SYNTAX INTEGER (4..15)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A long term average link error rate. It ranges
from 10**-4 to 10**-15 and is reported as the
absolute value of the base 10 logarithm (refer to
ANSI SMT 9.4.7.5.)."
REFERENCE
"ANSI { fddiPORT 51 }"
::= { fddimibPORTEntry 15 }
fddimibPORTLemRejectCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"A link error monitoring count of the times that a
link has been rejected."
REFERENCE
"ANSI { fddiPORT 52 }"
::= { fddimibPORTEntry 16 }
fddimibPORTLemCts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The aggregate link error monitor error count, set
to zero only on station initialization."
REFERENCE
"ANSI { fddiPORT 53 }"
::= { fddimibPORTEntry 17 }
fddimibPORTLerCutoff OBJECT-TYPE
SYNTAX INTEGER (4..15)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The link error rate estimate at which a link
connection will be broken. It ranges from 10**-4
to 10**-15 and is reported as the absolute value
of the base 10 logarithm (default of 7)."
REFERENCE
"ANSI { fddiPORT 58 }"
::= { fddimibPORTEntry 18 }
fddimibPORTLerAlarm OBJECT-TYPE
SYNTAX INTEGER (4..15)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The link error rate estimate at which a link
connection will generate an alarm. It ranges from
10**-4 to 10**-15 and is reported as the absolute
value of the base 10 logarithm of the estimate
(default of 8)."
REFERENCE
"ANSI { fddiPORT 59 }"
::= { fddimibPORTEntry 19 }
fddimibPORTConnectState OBJECT-TYPE
SYNTAX INTEGER {
disabled(1),
connecting(2),
standby(3),
active(4)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An indication of the connect state of this PORT
and is equal to the value of Connect_State (refer
to ANSI 9.4.1)"
REFERENCE
"ANSI { fddiPORT 61 }"
::= { fddimibPORTEntry 20 }
fddimibPORTPCMState OBJECT-TYPE
SYNTAX INTEGER {
pc0(1), -- Off
pc1(2), -- Break
pc2(3), -- Trace
pc3(4), -- Connect
pc4(5), -- Next
pc5(6), -- Signal
pc6(7), -- Join
pc7(8), -- Verify
pc8(9), -- Active
pc9(10) -- Maint
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The state of this Port's PCM state machine refer
to ANSI SMT 9.6.2)."
REFERENCE
"ANSI { fddiPORT 62 }"
::= { fddimibPORTEntry 21 }
fddimibPORTPCWithhold OBJECT-TYPE
SYNTAX INTEGER {
none(1),
m-m(2),
otherincompatible(3),
pathnotavailable(4)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of PC_Withhold (refer to ANSI SMT
9.4.1)."
REFERENCE
"ANSI { fddiPORT 63 }"
::= { fddimibPORTEntry 22 }
fddimibPORTLerFlag OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The condition becomes active when the value of
fddiPORTLerEstimate is less than or equal to
fddiPORTLerAlarm. This will be reported with the
Status Report Frames (SRF) (refer to ANSI SMT
7.2.7 and 8.3)."
REFERENCE
"ANSI { fddiPORT 64 }"
::= { fddimibPORTEntry 23 }
fddimibPORTHardwarePresent OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This variable indicates the presence of
underlying hardware support for this Port object.
If the value of this object is false(2), the
reporting of the objects in this entry may be
handled in an implementation-specific manner."
REFERENCE
"ANSI { fddiPORT 65 }"
::= { fddimibPORTEntry 24 }
fddimibPORTAction OBJECT-TYPE
SYNTAX INTEGER {
other(1), -- none of the following
maintPORT(2),
enablePORT(3),
disablePORT(4),
startPORT(5),
stopPORT(6)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Causes a Control signal to be generated with a
control_action of 'Signal' and the 'variable'
parameter set with the appropriate value (i.e.,
PC_Maint, PC_Enable, PC_Disable, PC_Start, or
PC_Stop) (refer to ANSI 9.4.2)."
REFERENCE
"ANSI { fddiPORT 70 }"
::= { fddimibPORTEntry 25 }
-- Generic Traps
coldStart TRAP-TYPE
ENTERPRISE snmp
VARIABLES {sysDescr}
DESCRIPTION
"A coldStart trap signifies that the sending
protocol entity is reinitializing itself such
that the agent's configuration or the rotocol
entity implementation may be altered."
::= 0
authenticationFailure TRAP-TYPE
ENTERPRISE snmp
VARIABLES {sysDescr}
DESCRIPTION
"An authenticationFailure trap signifies that
the sending protocol entity is the addressee
of a protocol message that is not properly
authenticated. While implementations of the
SNMP must be capable of generating this trap,
they must also be capable of suppressing the
emission of such traps via an implementation-
specific mechanism."
::= 4
-- Enterprise-specific Traps
a3comLowBattery TRAP-TYPE
ENTERPRISE a3com
VARIABLES { hubLowBatteryCount }
DESCRIPTION
"An a3comLowBattery trap signifies that the sending
3Com FDDI WorkGroup Hub's Battery is low.
This is also indicated by an LED on the front panel
of the Box."
::= 54
a3comHighTemp TRAP-TYPE
ENTERPRISE a3com
VARIABLES { hubHighTempCount }
DESCRIPTION
"An a3comHighTemp trap signifies that the sending
3Com FDDI WorkGroup Hub's Temperature is high.
This is also indicated by an LED on the front panel
of the Box."
::= 55
a3comFanFailed TRAP-TYPE
ENTERPRISE a3com
VARIABLES { hubFanFailedCount }
DESCRIPTION
"An a3comFanFailed trap signifies that the sending
3Com FDDI WorkGroup Hub's Fan Failed.
This is also indicated by an LED on the front panel
of the Box."
::= 57
a3comBadTelnetPasswd TRAP-TYPE
ENTERPRISE a3com
VARIABLES { hubBadTelnetPasswdCount }
DESCRIPTION
"An a3comBadTelnetPasswd trap signifies that someone
tried three times telnet login to the sending 3Com
FDDI WorkGroup Hub and all failed. "
::= 58
a3comBadConsolePasswd TRAP-TYPE
ENTERPRISE a3com
VARIABLES { hubBadConsolePasswdCount }
DESCRIPTION
"An a3comBadConsolePasswd trap signifies that someone
tried three times Console login to the sending 3Com
FDDI WorkGroup Hub and failed. "
::= 59
-- 3COM NetBuilder FDDI WorkGroup Hub specific MIB
a3comFddiWGHubMib OBJECT IDENTIFIER ::= {a3com 16}
hubEnviroObject OBJECT IDENTIFIER ::= {a3comFddiWGHubMib 1}
hubLowBattery OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
" This variable shows current status of the hub's
battery.
If the variable changed from false to true, The
enterprise-specific trap(a3comLowBattery) will be
sent to the configured SNMP manager stations."
::= {hubEnviroObject 1}
hubHighTemp OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
" This variable shows the current temperature status
of the hub.
If the variable changed from false to true, The
enterprise-specific trap(a3comHighTemp) will be
sent to the configured SNMP manager stations."
::= {hubEnviroObject 2}
hubFanFailed OBJECT-TYPE
SYNTAX INTEGER { true(1), false(2) }
ACCESS read-only
STATUS mandatory
DESCRIPTION
" This variable shows the current Fan Fail status
of the hub.
If the variable changed from false to true, The
enterprise-specific trap(a3comFanFailed) will be
sent to the configured SNMP manager stations."
::= {hubEnviroObject 3}
hubLowBatteryCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
" This variable shows the number of times the
hubLowBattery variable has changed from false to true."
::= {hubEnviroObject 4}
hubHighTempCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
" This variable shows the number of times the
hubHighTemp variable has changed from false to true.
This variable is also saved in NVRAM, the count stayed
the same when the power is off."
::= {hubEnviroObject 5}
hubFanFailedCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
" This variable shows the number of times the
hubFanFailed variable has changed from false to true."
::= {hubEnviroObject 6}
hubBadTelnetPasswdCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
" This variable increment by one after three
consecutive telnet login fails.
This variable is also saved in NVRAM, the count stayed
the same when the power is off."
::= {hubEnviroObject 7}
hubBadConsolePasswdCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
" This variable increment by one after three
consecutive console login fails.
This variable is also saved in NVRAM, the count stayed
the same when the power is off."
::= {hubEnviroObject 8}
END